If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-8n-30=0
a = 1; b = -8; c = -30;
Δ = b2-4ac
Δ = -82-4·1·(-30)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{46}}{2*1}=\frac{8-2\sqrt{46}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{46}}{2*1}=\frac{8+2\sqrt{46}}{2} $
| x=24÷3(2) | | 65=15x=35 | | x=24÷3(2)= | | 8x+7=5x+6 | | 2x+28+x^2=0 | | 5(2x+7)=-30+5 | | 3^x=189 | | 8×+7=5x+6 | | 82-y=76 | | 9b=7b-10 | | 26=7x+1-2x | | -2x-15=-9 | | 20+n=41 | | -8(2-r)=24 | | a2-12a+35=0 | | 7-3w=28 | | 10+-4w=6 | | -4+x=-6+1/5x | | 1/2k+6=4k-8 | | 7x+2=1x+8 | | 2x^2+14+2=0 | | 5(n–2)=5n–10 | | 1/2(b-2)=b | | 4/3x+11=5 | | 4x-8(-3)=12 | | 2x+2=19-3×+4× | | 4u+2=-26 | | 6x^2-17x+20=0 | | 1/2(b-2)=2 | | 2/5u+3/4=2/3×2 | | 2(6-2z)-4(2z+9)=z-28 | | 5/3x+10=3 |